
Demo: Mobile Gaming on Personal Computers
with Direct Android Emulation

Qifan Yang1,2, Xinlei Yang1, Zhenhua Li1, Yunhao Liu1,3,
Rui Zhou2, Guoyang Du2, Ziwen Wu2, Tianyin Xu4, Ennan Zhai5

1Tsinghua University 2Tencent Co. Ltd. 3Michigan State University 4UIUC 5Alibaba Group

ABSTRACT

Playing Android games with Windows x86 PCs is now popu-
lar, and the common solution is to use mobile emulators built
with the AOVB (Android-x86 On VirtualBox) architecture.
Nevertheless, running heavy 3D Android games on AOVB
incurs considerable overhead of full virtualization, thus often
leading to unsatisfactory smoothness. To tackle this issue,
we present DAOW, a commercial game-oriented Android
emulator implementing the idea of direct Android emulation,
which eliminates the overhead of full virtualization by pro-
viding foreign Android binaries with direct access to the
domestic PC hardware through Windows kernel interfaces.
In this demo, we will demonstrate that DAOW essentially
outperforms traditional AOVB-based emulators in terms of
running smoothness, game startup time, and memory usage.

1 INTRODUCTION

Computer games, as one killer application of PCs and mobile
devices, own a huge market of billion dollars [5]. The rapid
evolution of computer games contributes to numerous tech-
nical innovations regarding both hardware (larger memories,
faster CPUs, and graphics cards) and software (e.g., multi-
media support and OS kernel improvements) [1]. In recent
years, as mobile gaming is becoming the largest segment of
the game market [5], many game vendors are inclined to im-
plementing mobile games over their PC or console versions.
While since porting mobile-based implementation onto PC
platforms with different OSes and architectures requires im-
mense efforts, only a few mobile games have corresponding
PC versions. Despite tool support (e.g., Unity and Unreal),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6169-9/19/10.
https://doi.org/10.1145/3300061.3343372

such porting is still far from trivial as the existing tools pro-
vide neither correctness guarantee nor usability control.

With the boom in mobile-first gaming, there exist pressing
demands for supporting mobile games on PC platforms, ow-
ing to the better QoE (e.g., visual experience and operating
experience) that PC-based gaming can provide. The de facto
solution for playingmobile games on PCs usually depends on
mobile emulators, such as Bluestacks, Genymotion, KoPlayer,
Nox, and MEmu. All these game-oriented emulators employ
a full virtualization architecture called AOVB (Android-x86
On VirtualBox), namely running Android-x86 on top of a
VirtualBox VM. Android-x86 is an x86 porting of the An-
droid OS, and VirtualBox bridges Android-x86 (the guest
OS) to the host OS (e.g., Windows). The AOVB architecture
obtains high popularity as it is free, open-source, and fully
transparent to unmodified mobile game binaries.

While AOVB-based emulators can run most mobile games,
they are only capable of providing desired gaming experi-
ences for 2D games as well as less interactive 3D games. As to
heavy 3D games like Vainglory and PUBG Mobile, however,
AOVB-based emulators yield substantially degraded gaming
experiences (measured by smoothness, which is detailed in
our full paper [2]). A heavy Android game is empirically
considered to invoke 2000+ rendering instructions on aver-
age to display a graphic frame. Note that even millisecond-
level stagnation can detract the overall experience in gaming,
which differs from many other applications.

To demystify the above issue, we built and maintained an
AOVB-based emulator (referred to as AOVB-EMU), which
possesses more than 30 million users running over 40,000
Android game apps. Based on our measurement of its user
experiences, the performance bottleneck stems from the con-
siderable overhead of full virtualization. Aiming at support-
ing heavy mobile games, a series of para-virtualization and
hardware-assisted optimizations are applied to AOVB-EMU,
including GPU acceleration for graphic processing, VirtIO [3]
for increasing the bandwidth of rendering pipelines, and In-
tel VT [4]. Such optimizations indeed substantially increase
the smoothness when running heavy 3D games, yet the gam-
ing experiences are still far from satisfactory. To handle this,
the boundary of virtualization needs to be broken.

https://doi.org/10.1145/3300061.3343372


We developDAOWwhich, to the best of our knowledge, is
the first and only emulator that can achieve the same level of
smoothness when running heavy 3D Android games onWin-
dows PCs, as being played on Android phones natively. At its
heart lies the idea of direct Android emulation, which directly
executes Android app binaries on top of x86-based Windows.
Specifically, DAOW provides foreign Android binaries with
direct access to the domestic PC hardware through Win-
dows kernel interfaces, thus achieving nearly native hard-
ware performance. Full technical details of DAOW [2] will
be presented at the main conference of ACM MobiCom 2019.

2 THE DESIGN OF DAOW

In order to implement direct Android emulation, a series of
challenges from the distinctions at different levels have to
be dealt with, including ISA (ARM vs. x86), OS (Android vs.

Windows), and device control (touch screen vs. physical key-
board and mouse). First, there exist significant distinctions in
data structures and execution behavior of binaries between
Android and Windows. One possible solution is to conduct
instruction-level rewriting, yet it changes the layout of the
original binaries and complicate the implementation. Second,
Android/Linux and Windows have different sets of system
calls (syscalls), which requires great engineering efforts to
translate Linux syscalls to Windows, as well as incurs large
runtime overhead if not appropriately implemented. Third,
the interaction gap between mobile and PC-based gaming,
which is rooted in the intrinsic hardware differences between
mobile devices and PCs, also requires judicious consideration.
For instance, PC games use physical keyboards and mouses
for inputs while mobile games define a variety of buttons
in different contexts. Furthermore, PCs’ large screens could
aggravate the subtle rendering issues of mobile games, thus
leading to uncomfortable aliasing effect.
To address the above challenges, we make the following

endeavors in the design and implementation of DAOW:
• A data-driven, pragmatic approach is employed to fulfill

cost-efficient instruction rewriting and syscall emulation.We
first comprehensively profile the instructions and syscalls
involved in a wide variety of Android game apps. Based on
this, we prune different types of instructions which need
rewriting by reducing them to a few “patterns”. For each
pattern, we utilize trampolines and write native Windows
utility functions so as to minimize the changes in binary
structures during instruction rewriting. Besides, we priori-
tize the support for the popular syscalls while treating the
rarely used ones as exceptions; we also leverage the “com-
mon divisors” among the syscalls to significantly reduce
the engineering efforts.

• We leverage a series of graphics techniques to bridge the

interaction gap between mobile and PC-based gaming. An

DAOW Emulator App Instance

Windows

Syscalls

(10/7/XP)

Media Host

User mode

Kernel mode

Graphics
Anti-Aliasing

Input
Context-aware 
Key Mapping

Sound
Memory Mapping I/O

Shared

Memory

Linux ARM
Binary

Compatible 
Linux x86

Binary

Smoothness
Evaluator

fork

Syscall 
Handler

Translation

Execution

Linux
syscall

dynamic 
translation

Customized 
Android-x86

Compatible 
Android-x86 

Binary

rewrite-
on-load

DAOW Kernel Driver
DAOW 

Syscalls

Linux
syscall

Figure 1: Architectural overview of DAOW.

intelligent mapping technique is introduced for dynami-
cally detecting on-screen buttons and mapping them to
appropriate keys of the physical keyboards. Moreover,a
progressive anti-aliasing method that assembles multi-
ple existing techniques is adopted with low overhead to
smoothen rendering distortion and eliminate aliasing.

• To further enhance the performance and gaming experiences,

we make a number of optimizations in DAOW.We improve
the efficiency of syscall emulation through extensive re-
source sharing, early preparation, and delayed execution.
We also employ shared memory for direct bulk data trans-
fer between the app instances and the media component
for real-time user interactions. In addition, we utilize se-
curity approaches to prevent external cheating programs
from modifying Android game app instances, thus further
enhancing users’ gaming experiences.
As depicted in figure 1, our design of DAOW contains

three components: 1) Emulator, 2) Kernel Driver, and 3) Me-
dia Host. The Emulator inits a customized Android frame-
work which is decoupled from the original Android-x86 dis-
tribution (by removing the built-in Linux kernel and the
unused services), and rewrites its binaries while loading
them into memory. Then in order to allow dynamic transla-
tion from ARM binaries to x86 binaries, the Emulator forks
an extra Windows process for running an Android game
app. The Kernel Driver disposes Linux syscalls through a
series of DAOW syscalls (i.e., our refined “common divisors”
among Linux syscalls)—they are either directly executed or
translated into Windows syscalls for execution. Addition-
ally, Media Host copes with user input, sound, and graphics
issues, as well as measure the smoothness of the game.
Implementation andEvaluation. DAOW is implemented
in ∼500K lines of C++ code. Since its first launch in Sep. 2017,
DAOW has been used by 50+ million users to run ∼8000
heavy Android games on Windows PCs. Compared with



Figure 2: A screenshot of DAOW (together with GPU-Z) when a 3D FPS game is running.

AOVB-EMU, DAOW improves the smoothness by an av-
erage of 21%, from 0.76 (“rarely smooth”) to 0.92 (“mostly
smooth”), for millions of users when playing heavy 3D games.
Besides, it decreases near half of (48%) the the game startup
time and the memory usage by 22% on average. Please refer
to our full paper [2] for details.

3 DEMONSTRATION PLAN

Our demonstration will use two commodity laptops (labeled
as A and B) with the same hardware configurations, BIOS
options (VT off by default), operating system, drivers, and
Internet access. We will install an AOVB-based Android em-
ulator and our developed DAOW on both laptops. Several
popular heavy Android games and Android benchmarks will
be installed in every emulator. Figure 2 shows PUBGM (a 3D
first-person shooter game) running with DAOW on a laptop.
The main panel of DAOW holds the virtual screen of an
emulated Android instance. To create a more immersive ex-
perience, the mouse cursor is hidden by default. On the left of
the main panel, there is a toolbar with useful features, such as
full-screenmode and screen recording. The default controller
panel shows the default key mapping of the mobile game.
Specially, the “F” key is a context-aware multi-functional key
that dynamically changes its key mapping to reuse available
keys and resolve possible conflicts [2].
To monitor the utilization of system resources, we will

install several third-party benchmark utilities such as CPU-Z
and GPU-Z. The demonstration consists of two components:
(1) comparing the smoothness of the graphics by running
the same graphics benchmarks or game playbacks, and (2)
letting the audience experience DAOW in person.

Smoothness Comparison. We run the graphics bench-
marks and game playbacks (which reproduce the same gam-
ing scenario without human intervention) on both laptops
with different emulators. The audience will be able to tell
the smoothness of the graphics different between the AOVB-
based emulator and DAOW, with DAOW running on a much
higher frame rate. Besides, from the statistics shown on third-
party utilities, the audience can also quantitatively compare
their resource usage including CPU and GPU usage.
In-person Experience. Wewill invite the audience to play
the same heavy Android games on both types of Android
emulators. Besides smoothness and details of graphics, the
audience can also tell the difference of keyboard and mouse
support, since DAOW provides a more user-friendly key
mapping. Our demo requires the default space (one 6 × 2.5 ft
table) and two power outlets. Wireless access point is needed
as most popular Android games require Internet connectivity.
The expected setup time of our demo is less than 10 minutes.

REFERENCES

[1] Riad Chikhani. 2015. The History of Gaming. https://techcrunch.com/
2015/10/31/the-history-of-gaming-an-evolving-community/.

[2] Qifan Yang, Zhenhua Li, Yunhao Liu, Hai Long, Yuanchao Huang, Ji-
aming He, Tianyin Xu, and Ennan Zhai. 2019. Mobile Gaming on
Personal Computers with Direct Android Emulation. In Proceedings of

ACM MobiCom.
[3] Rusty Russell. 2008. Virtio: Towards a De-facto Standard for Virtual I/O

Devices. ACM Operating Systems Review 42, 5 (2008), 95–103.
[4] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C.M.

Martins, Andrew V. Anderson, Steven M. Bennett, Alain Kagi, Felix H.
Leung, and Larry Smith. 2005. Intel Virtualization Technology. IEEE
Computer 38, 5 (2005), 48–56.

[5] Tom Wijman. 2018. Mobile Revenues Account for More
Than 50% of the Global Games Market in 2018. https:
//newzoo.com/insights/articles/global-games-market-reaches-
137-9-billion-in-2018-mobile-games-take-half/.

https://techcrunch.com/2015/10/31/the-history-of-gaming-an-evolving-community/
https://techcrunch.com/2015/10/31/the-history-of-gaming-an-evolving-community/
https://newzoo.com/insights/articles/global-games-market-reaches-137-9-billion-in-2018-mobile-games-take-half/
https://newzoo.com/insights/articles/global-games-market-reaches-137-9-billion-in-2018-mobile-games-take-half/
https://newzoo.com/insights/articles/global-games-market-reaches-137-9-billion-in-2018-mobile-games-take-half/

	Abstract
	1 Introduction
	2 The Design of DAOW
	3 Demonstration Plan
	References

